Studies of the EPR g-Shift of $[Cr(CN)_6]^{3-}$ Clusters due to Crystal-Field and Charge-Transfer Mechanisms

Xiao-Xuan Wu^{a,c,d}, Wen-Ling Feng^{b,c}, Wang Fang^c, and Wen-Chen Zheng^{c,d}

^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P. R. China

^b Department of Applied Physics, Chongqing Institute of Technology, Chongqing 400050, P. R. China

^c Department of Material Science, Sichuan University, Chengdu 610064, P. R. China

d International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to X.-X. W.; E-mail: wxxdd@163.com

Z. Naturforsch. 62a, 218 - 220 (2007); received January 19, 2007

The EPR g-shift Δg ($\approx g-g_e$) of the metal-cyanide cluster $[\text{Cr}(\text{CN})_6]^{3-}$ is calculated by high-order perturbation formulas based on both the crystal-field (CF) and charge-transfer (CT) mechanisms (the latter is often neglected in the crystal-field theory). The result agrees with the experimental value. The sign of the g-shift Δg_{CT} due to the contribution of the CT mechanism is opposite to that of Δg_{CF} due to the contribution of the CF mechanism, and the absolute value of Δg_{CT} is about 34% of that of Δg_{CF} . It appears that for transition metal ions in a strong covalent cluster, a reasonable theoretical explanation of the g-shift should take both the CF and CT mechanism into account.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Charge-Transfer Mechanism; Cr^{3+} ; $[Cr(CN)_6]^{3-}$.

1. Introduction

The EPR spectra of the metal-cyanide clusters $[Cr(CN)_6]^{3-}$ in crystals, such as alkali halides, have received interest [1-5]. It is found that within the cubic symmetry approximation, the g-factor of $[Cr(CN)_6]^{3-}$ clusters in various crystals is about 1.992(1) [1-5]. The small g-shift Δg ($\approx g - g_e$, where $g_e \approx 2.0023$ is the g-factor of the free electron) suggests that the covalence in [Cr(CN)₆]³⁻ clusters is strong. In general, the contribution of covalence to the g-shift Δg comes from two effects: (i) The d electrons of the central 3dⁿ ion are mixed with the p electrons of ligands via the covalence effect, and so the spin-orbit (SO) coupling parameter of the ligand ion can contribute to the g-shift. In this case, a two-SO-parameter model (in which the contributions to the g-shift due to both the SO coupling parameter of the central 3dⁿ ion and that of ligands are included [6-8]) should be used. (ii) The strong covalence results in a lower chargetransfer (CT) energy level; thus the contribution to the g-shift Δg due to the mixture of the CT excited state with the ground state becomes larger, so that a reasonable explanation of the g-shift should take not only the crystal-field (CF) mechanism, but also the (CT) mechanism into account [9]. In $[Cr(CN)_6]^{3-}$ clusters, since the SO coupling parameter ζ_p^0 (\approx 49 cm⁻¹ [10]) of the ligand ion C⁴⁻ is much smaller than that ($\zeta_d^0 \approx$ 273 cm⁻¹ [11]) of the central ion Cr³⁺, the second effect is more important. So, in this paper, we apply the complete high-order perturbation formula based on both mechanisms to calculate the *g*-shift Δg of $[Cr(CN)_6]^{3-}$ clusters in various crystals. The results (including the relative importance of the CT mechanism) are discussed.

2. Calculation

For an octahedral $3d^n$ MX₆ cluster, the one-electron basis functions based on the molecular orbital (MO) theory can be expressed as

$$|\Psi_{\gamma}\rangle = N_{\gamma}^{X}(|\mathbf{d}_{\gamma}\rangle + \lambda_{\gamma}^{X}|\mathbf{p}_{\gamma}\rangle),$$
 (1)

where $|d_{\gamma}\rangle$ and $|p_{\gamma}\rangle$ are the d orbitals of the central $3d^n$ ion and p orbitals of ligands, respectively. The superscript X=a or b stands for anti-bonding orbitals (related to CF-excited states) or bonding orbitals (related to CT-excited states). The subscript $\gamma=t$ or e indicates the irreducible representation t_{2g} or e_g of the

 O_h group. N_{γ}^X and λ_{γ}^X denote the normalization coefficients and the orbital mixing coefficients, respectively.

From the above functions, and by adding the SO coupling Hamiltonian H_{SO}^{CT} and the Zeeman term H_{Z}^{CT} based on the CT mechanism to the perturbation Hamiltonian in the CF mechanism, the complete high-order perturbation formula of the g-shift Δg including both the CF and CT mechanisms for the $3d^3$ ions in the cubic octahedral cluster, was derived as [9]

$$\begin{split} \Delta g &= \Delta g_{\text{CF}} + \Delta g_{\text{CT}}, \\ \Delta g_{\text{CF}} &= -\frac{8k'_{\text{CF}}\zeta'_{\text{CF}}}{3E_1} - \frac{4k'_{\text{CF}}\zeta_{\text{CF}}\zeta'_{\text{CF}}}{9E_1^2} + \frac{2k_{\text{CF}}\zeta'^2_{\text{CF}}}{9E_1^2} \\ &- \frac{4g_s\zeta'^2_{\text{CF}}}{9E_1^2} + \frac{4k_{\text{CF}}\zeta'^2_{\text{CF}}}{9E_3^2} - \frac{8g'_s\zeta'^2_{\text{CF}}}{9E_3^2} \\ &- \frac{2k_{\text{CF}}\zeta^2_{\text{CF}}}{3E_2^2} - \frac{2g_s\zeta^2_{\text{CF}}}{3E_2^2} + \frac{4k'_{\text{CF}}\zeta_{\text{CF}}\zeta'_{\text{CF}}}{9E_1E_3} \\ &- \frac{4k'_{\text{CF}}\zeta_{\text{CF}}\zeta'_{\text{CF}}}{3E_1E_2} + \frac{4k'_{\text{CF}}\zeta_{\text{CF}}\zeta'_{\text{CF}}}{3E_2E_3}, \end{split} \tag{2}$$

$$\Delta g_{\text{CT}} &= -\frac{8k'_{\text{CT}}\zeta'_{\text{CT}}}{3E_n}, \end{split}$$

in which the zero-order energy denominators E_i related to the CF mechanism are

$$E_1 = 10Dq, \quad E_2 = 15B + 5C,$$

 $E_3 = 9B + 3C + 10Dq,$ (3)

where Dq is the cubic field parameter and B and C are the Racah parameters. These parameters and the CT energy level E_n can be estimated from the optical spectra of the studied system. For $[Cr(CN)_6]^{3-}$ clusters, from the optical spectra including the d-d transitions and charge-transfer from ligand to metal (CTLM) transition [12, 13] (all these transitions are shown in Table 1 of [12]), we have

$$B \approx 620 \text{ cm}^{-1}, \quad C \approx 2985 \text{ cm}^{-1},$$

 $Dq \approx 2700 \text{ cm}^{-1}, \quad E_n \approx 38600 \text{ cm}^{-1}.$ (4)

Since the one-electron basis functions include t_{2g} and e_g orbitals, the one-electron SO interaction involves two SO coupling parameters ζ and ζ' . The parameter ζ denotes the interaction only within t_{2g} orbitals, and ζ' the interaction between t_{2g} and e_g orbitals. The differentiation between ζ and ζ' is related to the covalence of the studied systems. Similar cases can also occur in the orbital reduction factor. Thus,

Table 1. The molecular orbital coefficients in $[Cr(CN)_6]^{3-}$

$N_{\rm e}^{\rm a}$	$N_{\mathrm{t}}^{\mathrm{a}}$	$\lambda_{ m e}^{ m b}$	$\lambda_{\mathrm{t}}^{\mathrm{b}}$	$N_{ m e}^{ m b}$	$N_{ m t}^{ m b}$
0.9376	0.9138	2.4251	2.1697	0.3994	0.4099

Table 2. The spin-orbit coupling parameters (in cm⁻¹) and orbital reduction factors related to the CF and CT mechanisms in [Cr(CN)₆]³⁻ clusters.

ζ_{CF}	$\zeta_{ m CF}'$	ζ_{CT}	ζ_{CT}'	$k_{\rm CF}$	k'_{CF}	k_{CT}	$k'_{\rm CT}$
233.2	228.6	92.2	110.6	0.8940	0.6741	0.2048	0.6799

Table 3. The *g*-shift $\Delta g \approx (g - g_e)$ of $[Cr(CN)_6]^{3-}$ clusters.

$\Delta g_{ m CF}$	Δg_{CT}	$\Delta g(\text{total})$	Δg (Expt. [1–5])
-0.0155	0.0052	-0.0103	-0.0103(10)

in (2) we have two SO coupling parameters and orbital reduction factors related to the CF and CT mechanisms. From the crystal- and ligand-field theory they can be expressed as

$$\begin{split} &\zeta_{\text{CF}} = (N_{t}^{a})^{2} [\zeta_{d}^{0} + (\lambda_{t}^{a})^{2} \zeta_{p}^{0} / 2], \\ &\zeta_{\text{CF}}' = N_{t}^{a} \cdot N_{e}^{a} [\zeta_{d}^{0} - \lambda_{t}^{a} \lambda_{e}^{a} \zeta_{p}^{0} / 2], \\ &\zeta_{\text{CT}} = N_{t}^{a} \cdot N_{t}^{b} [\zeta_{d}^{0} + \lambda_{t}^{a} \lambda_{t}^{b} \zeta_{p}^{0} / 2], \\ &\zeta_{\text{CT}} = N_{t}^{a} \cdot N_{e}^{b} [\zeta_{d}^{0} - \lambda_{t}^{a} \lambda_{e}^{b} \zeta_{p}^{0} / 2], \\ &\zeta_{\text{CT}}' = N_{t}^{a} \cdot N_{e}^{b} [\zeta_{d}^{0} - \lambda_{t}^{a} \lambda_{e}^{b} \zeta_{p}^{0} / 2], \\ &k_{\text{CF}} = (N_{t}^{a})^{2} [1 - 2\lambda_{t}^{a} S_{\text{dp}}(t_{2g}) + (\lambda_{t}^{a})^{2} / 2], \\ &k_{\text{CF}}' = N_{t}^{a} \cdot N_{e}^{a} [1 + \lambda_{t}^{a} S_{\text{dp}}(t_{2g}) + \lambda_{e}^{a} S_{\text{dp}}(e_{g}) - \lambda_{t}^{a} \lambda_{e}^{a} / \sqrt{2}], \\ &k_{\text{CT}}' = N_{t}^{a} \cdot N_{t}^{b} [1 + (\lambda_{t}^{a} + \lambda_{t}^{b}) S_{\text{dp}}(t_{2g}) + \lambda_{t}^{a} \lambda_{t}^{b} / 2], \\ &k_{\text{CT}}' = N_{t}^{a} \cdot N_{e}^{b} [1 + \lambda_{e}^{b} S_{\text{dp}}(e_{g}) + \lambda_{\pi}^{a} S_{\text{dp}}(t_{2g}) - \lambda_{t}^{a} \lambda_{e}^{b} / 2], \end{split}$$

where ζ_d^0 and ζ_p^0 are the SO coupling parameters of the free 3dⁿ ion and that of the free ligand ion. For the studied [Cr(CN)₆]³⁻ clusters, the values of ζ_d^0 and ζ_p^0 are given in the Introduction. $S_{\rm dp}(\gamma)$ is the group overlap integral. From the Slater-type self-consistent field (SCF) functions [14,15] and the Cr³⁺-C⁴⁻ distance $R\approx 2.08$ Å in [Cr(CN)₆]³⁻ clusters [16], we obtain $S_{\rm dp}(t_{\rm 2g})\approx 0.05589$ and $S_{\rm dp}(e_{\rm g})\approx 0.1154$.

From the one-electron basis functions in (1), the MO coefficients N_{γ}^{X} and λ_{γ}^{X} can be related by the normalization relationships

$$N_{\gamma}^{X}[1+2\lambda_{\gamma}^{X}S_{\mathrm{dp}}(\gamma)+(\lambda_{\gamma}^{X})^{2}]^{1/2}=1$$
 (6)

and the orthonormal relations

$$\lambda_{\gamma}^{b} = -\frac{1 + \lambda_{\gamma}^{a} S_{dp}(\gamma)}{\lambda_{\gamma}^{a} + S_{dp}(\gamma)}.$$
 (7)

Thus, in the above formulas, if the MO coefficients λ_{γ}^{a} are known, the other MO coefficients N_{γ}^{a} , λ_{γ}^{b} and

 N_{γ}^{b} , the parameters in (5) and hence the *g*-shift Δg can be calculated. We take λ_{γ}^{a} (= $\lambda_{t}^{a} = \lambda_{e}^{a}$ for decreasing the number of adjustable parameters) as the only adjustable parameter. By fitting the calculated *g*-shift Δg of $[Cr(CN)_{6}]^{3-}$ to the experimental value, we obtain

$$\lambda_{\gamma}^{a} \approx -0.5038. \tag{8}$$

The other MO coefficients and the parameters in (5) are, respectively, shown in Tables 1 and 2. The comparison between the calculated and experimental g-shift Δg is shown in Table 3.

3. Discussion

Table 2 shows that the parameter ζ and factor k are indeed different from the corresponding parameter ζ' and factor k', suggesting that the studied $[Cr(CN)_6]^{3-}$ clusters have strong covalence.

- [1] K. Hermanowicz, J. Phys.: Condens. Matter **9**, 1369 (1997).
- [2] J. Hanuza, W. Strek, K. Hermanowicz, B. Jezowsha-Trzebiatowska, and I. Trabjerg, Chem. Phys. 86, 137 (1984).
- [3] D. M. Wang, D. R. Hutton, and J. R. Pilbrow, J. Phys. C: Solid State Phys. 19, 789 (1986).
- [4] B. R. McGarvey, J. Chem. Phys. 41, 3743 (1964).
- [5] J. O. Artman, J. C. Murphy, J. A. Kohn, and W. D. Townes, Phys. Rev. Lett. 4, 607 (1960).
- [6] J. J. Chen, M. L. Du, and J. Qin, Phys. Status Solidi B 174, K15 (1992).
- [7] M. L. Du and C. Rudowicz, Phys. Rev. B 46, 8974 (1992).
- [8] Q. Zhou, W. C. Zheng, X. X. Wu, and Y. Mei, Spectrochim. Acta A 62, 769 (2005).

Table 3 shows that, if only the CF mechanism is considered, the calculated g-shift $\Delta g_{\rm CF}$ of $[{\rm Cr}({\rm CN})_6]^{3-}$ clusters agrees poorly with the observed value, whereas, if the contribution $\Delta g_{\rm CT}$ of the CT mechanism is added, the calculated $\Delta g({\rm total})$ is consistent with the observed value. The contribution $\Delta g_{\rm CT}$ due to the CT mechanism is opposite in sign and about 34% in magnitude compared with the contribution $\Delta g_{\rm CF}$ due to the CF mechanism. So, for $[{\rm Cr}({\rm CN})_6]^{3-}$ and other transition metal cyanide clusters $[{\rm M}({\rm CN})_6]^{n-}$, because of the strong covalence, a reasonable theoretical explanation of the g-shift (or other EPR parameters) should take both the CF and CT mechanism into account.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 10274054) and the CAAC Scientific Research Base of Civil Aviation Flight Technology and Safety.

- [9] W. C. Zheng and X. X. Wu, J. Phys. Chem. Solids 66, 1701 (2005).
- [10] C.E. Moore, Atomic Energy Levels, National Bureau of Standards, Washington 1949.
- [11] J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964.
- [12] M. F. A. Hendrickx, V. S. Mironov, L. F. Chibotaru, and A. Ceulemans, J. Am. Chem. Soc. 125, 3694 (2003).
- [13] J. J. Alexander and H. B. Gray, J. Am. Chem. Soc. 90, 4260 (1968).
- [14] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [15] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
- [16] K. Pierloot, E. Van Praet, L. G. Vanquickenborne, and B. O. Roos, J. Phys. Chem. 97, 12220 (1993).